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Abstract

Generative models aim to learn the hid-
den representation of the input data. It de-
fine an explicit stochastic model of data, so
that ensure the sample drawn from the hid-
den representation are likely come from
the original data. This paper summarizes
popular sentence and document level gen-
erative models proposed in recent years,
including variational inference, sequence
to sequence learning, and some other re-
lated methods.

1 Introduction

Unsupervised learning aims to learn the inherent
structure in data so as to facilitated future work
such as generation, and prediction on image and
text process. Generative model is an approach
in unsupervised learning, which define an explicit
stochastic model of data, so that ensure the sam-
ples drawn from model are likely come from the
original data.

Auto encoder and decoder framework has been
widely used on learning generative model (Bengio
et al., 2007) (MarcAurelio Ranzato and LeCun,
2007). The encoder is trained to encoder input X
to hidden representation z, at the same time, the
decoder is trained to reconstruct input X from z
(Boureau et al., 2008). So that the target output
of auto-encoder is the input X . The autoencoder
model trained to maximize the likelihood of sam-
ple X conditional on z, which means the autoen-
coder attempt to sample values of z that are likely
to have producedX (Doersch, 2016).

Recent researches in autoencoder model have
lead to some amazing works in natural language
process. For tasks such as document modeling
and sequence learning, the variational autoencoder
has provided a new way to derive an effective ap-
proximation for the intractable distributions over

latent variables, and are able to generates samples
from the conditional distributions. In particular,
a major task in modeling text data is to learn the
document level representations. Using variational
inference method in the autoencoder and decoder
model has performed state-of-the-art results. In
addition, the autoencoder model also has been suc-
cessfully used in sentence representation. The en-
coder that encode the sentence to hidden represen-
tation served as a generic feature extractor for dif-
ferent tasks, such as sentiment analysis, text clas-
sification, language modeling, and machine trans-
lation.

2 Related works

Stochastic Gradient Variational Bayes (SGVB)
(Kingma and Welling, 2013) is an estimator that
used for approximate posterior inference, which
provides a very effective way to train models
where the data is assumed to be generated from
some continuous latent variables. Based on
that, Variational Recurrent Autoencoder(VRAE)
(Fabius and van Amersfoort, 2014) combines the
strength of RNN and SGVB, enable us to do unsu-
pervised learning on time series data. Moreover, a
generic variational framework for generative and
conditional models of text has been introduced to
solve tasks of text modeling and question answer-
ing (Miao et al., 2015). Using this framework,
a document level variational model (NVDM) has
been exploited to reconstruct document from bags
of words input. Kingma et al. also introduced a
semi-supervised variational inference framework
especially for partially labeled data (Kingma et al.,
2014). A semi-supervised sequential variational
autoencoder (SSVAE) has been recently proposed
to incorporate sequence to sequence learning with
semi-supervised variational inference framework,
and achieves state-of-the-art results on text classi-
fication.

In sentence level unsupervised learning, Skip-



Thought model reconstruct adjacent sentences
from an encoded passage (Kiros et al., 2015). A
sentence autoencoder model that use LSTM RNN
(Hochreiter and Schmidhuber, 1997) to read sen-
tence into a single vector (Dai and Le, 2015), and
use that to reconstruct the input sentence, which
can be used as a pretrain algorithm for super-
vised learning tasks. A variational autoencoder
language model aims to learn global latent repre-
sentations of sentence (Bowman et al., 2015), and
the results shown that it performs very well in im-
puting missing words task.

In the following part, we will discuss models
that have successfully used unsupervised learning
concepts in detail, and analyze the strength and
weakness of the unsupervised learning realization
in NLP related problems.

3 Variational autoencoder in Language

3.1 Variational autoencoder
Autoencoder aims to map every datapoint X to a
hidden representation z, so that datapoint X can
be easily reconstruct conditioned on the hidden
representation. Variational autoencoder (VAE)
(Kingma and Welling, 2013) assumes that samples
of the hidden representation z can be drawn from a
simple Gaussian distributionN(0, I), which is the
prior p(z). A VAE aims to minimize the KL diver-
gence between the posterior distribution qφ(z|X)
and the prior distribution p(z), which turns out can
be used to extract a valid lower bound on the true
log likelihood of the datapointX , (log p(X)).

L(X;φ, θ) =−DKL[qφ(z|X)||p(z)]
+ Eqφ(z|X)[log pθ(X|z)]
≤ log p(X)

This can be interpret as an autoencoder, which
consists a probabilistic encoder qφ(z|X) and a de-
coder pθ(X|z).

3.2 Neural Variational Document Model
The Neural Variational Document Model
(NVDM) (see Figure 1) is an unsupervised text
generative model which learns the continuous
semantic hidden representation for each docu-
ment. The model exploits the idea of variational
autoencoder: It take the document bag-of-words
representation X ∈ R|V | as an input, where
V is the vocabulary size. The MLP encoder

(inference network) qφ(z|X) aims to learn the
continuous hidden representation z ∈ RK of
a document, where K is the hidden vector’s
size. The softmax decoder (generative model)
pθ(X|z) =

∏N
i=1 p(xi|z) aims to reconstruct the

document by independently generating the words
(z → {xi}), where xi represents each word in the
document, one document has N words in total,
and N is variant over all documents. In order to
maximize the log likelihood log

∑
z p(X|z)p(z)

of documents, the lower bound has been derived
as:

L(X;φ, θ) =−DKL[qφ(z|X)||p(z)]

+ Eqφ(z|x)[
N∑
i=1

log(pθ(xi|z)]

≤ log
∑
z

p(X|z)p(z)

where p(z) is the Gaussian prior of z.

Figure 1: NVDM for document modelling

As a generative model, NVDM generates each
word directly from the continuous hidden repre-
sentation. NVDM achieved state-of-the-art per-
plexities on the 20NewsGroups and RCV1-v2.

3.3 Generating Sentences with Variational
Autoencoder

A variational autoencoder language model (Bow-
man et al., 2015) is used to capture global features
of sentences in a continuous hidden space. The
model depicted in Figure 2.

This model exploits LSTM language model
(Hochreiter and Schmidhuber, 1997) for both en-
coder and decoder. The encoder maps the input se-
quence to a hidden vector z, and the decoder lan-
guage model reconstruct the input sentence word



Figure 2: Variational autoencoder language model

by word conditioned on z. In the degenerate set-
ting, the hidden representation does not incorpo-
rate useful information thus this model perform ef-
fectively equivalent with regular language model
in language modeling task. However, it turns out
the global features extracted by VAE are useful in
imputing missing words task. The model is trained
with Books Corpus (Kiros et al., 2015). First, the
words in the dataset has been randomly dropped
with fixed drop rate. Then train the model to fill
in the missing words. In order to evaluate the
model, an adversarial evaluation method inspired
by generative adversarial networks (Goodfellow et
al., 2014) has been proposed. The performance of
imputation measured by examining imputing sen-
tence’s distinguishablility from the true sentence.
The results show VAE language model is substan-
tially better than regular LSTM language model,
which suggested the VAE language model produce
more diverse sample than LSTM language model.

4 Sentence representation

Sentence and document representation is an im-
portant intermediate task for many NLP applica-
tions, such as, document retrieval, web search,
spam filtering, and text classification. Traditional
classification and clustering algorithms require
fixed dimension vector as input. However, not all
of the sentences or documents in training set have
same length, which prevent us from directly use
text as input. The most common solution are bag-
of-words, and bag-of-n-grams text representation
(Harris, 1954), which provide a vocabulary size
vector for each text. Although both of two meth-
ods represent a text with a fixed size vector, they
suffer from different extent of word order lost and
data sparsity problems. From semantic perspec-
tive, bag-of-words and bag-of-n-grams almost em-
bed no semantic information of words, they con-
sider every word equally. In the following part,
we introduce several effective model for generat-

ing text representation.

4.1 Paragraph Vector

Le and Mikolov introduce a continuous distributed
vector representations for text called Paragraph
Vector (PV) (Le and Mikolov, 2014), the text
could be sentence, paragraph and document. They
used word paragraph to emphasis that model can
apply to variant-length text representation tasks.
PV is an unsupervised framework that generate a
hidden representation of paragraph, to help pre-
dicts word in this text. The paragraph vectors
are different among paragraphs, but the word vec-
tors, initialized with trained word embedding, are
shared across all paragraphs. PV encompasses two
different models: a distributed memory model and
distributed bag of words model.

A distributed memory model’s structure dis-
played in Figure 3. Every paragraph associated
with an unique id, and each id is mapped to a
unique p dimensional vector D, and every word
is also mapped to a unique q dimensional vector
W. The goal is to use paragraph vector and word
vector as hidden layer to predict next word in a
context. The hidden layer can be constructed with
paragraph vector and concatenated or averaged
word vectors. This model is similar to the Con-
tinuous Skip-gram Model (Mikolov et al., 2013a).

The author used paragraph vector and concate-
nated or averaged word vector as hidden represen-
tation, which treat word vectors equally. It might
not make sense because a paragraph’s meaning
could depends more on several important words.
One possible solution is to train an attention model
between paragraph vector and word vectors, such
that increase important word’s weight and de-
crease others’ on making the prediction. This
method is more useful when context window size
is large.

Figure 3: Paragraph Vector: A distributed memory
model



Figure 4: Paragraph Vector without word order-
ing: Distributed bag of words

Distributed bag of words model (Figure 4) ig-
nores context words in the input. It only takes
the paragraph representation as input, and make
the model to predict words that randomly selected
from paragraph. This model requires to store
less data, thus is faster to train. This idea is in-
spired from the skip-gram model in word vectors
(Mikolov et al., 2013b).

These two models have following main advan-
tages over bag-of-words: Both of them embed
semantic information of word by use word em-
bedding; The distributed memory model contains
word order information in a small context; The
hidden representation of paragraph has same size
with word vector, therefore it does not suffer high
dimensionality problem. The paragraph Vector
models achieve state-of-the-art results on Senti-
ment Analysis and Information Retrieval tasks.

4.2 Skip-Thought

Skip-Thought is an unsupervised learning method,
which learns a sentence level representation. The
model’s structure inherits from the Skip-gram
(Mikolov et al., 2013b). Instead of use a word
to predict its surrounding words, this model use
a sentence to predict surrounding sentences. In-
tuitively, a sentence’s meaning can be infer from
its neighbor sentences, which enable us to learn
the representation of a sentence by its neighbors.
Skip-Thought (See Figure 5) can be framed as an
autodecoder model. For each (si−1, si, si+1) tuple
sentences, the encoder and decoder do the follow-
ing jobs:

The encoder is a neural language model which
generates a representation of si. In Skip-Thought,
a GRU encoder scans words in si one by one.
At each time step, the encoder generates a hid-
den state hti, which can be regarded as a hidden
meaning representation of all words before the tth

Figure 5: Skip-Thought encoder-decoder model

word. So that the last hidden state hi of sentence
si is a representation of this whole sentence, which
wraps all words information.

The decoder is also a neural language model,
but conditions on the hidden representation of si.
Two GRU decoders scan words in si−1 and si+1

separately. The decoder GRU has similar struc-
ture with the encoder GRU, except the decoder
GRU add bias to the update gate, reset gate, and
hidden state, which computes by hidden represen-
tation hi. The decoders trained as an language
model, and the objective function is the sum of the
log probabilities for si−1 and si+1 conditioned on
the encoder representation.

4.3 Sequence to Sequence learning and
Sequence Autoencoder

Sequence to sequence learning (seq2seq) is a su-
pervised model (Sutskever et al., 2014) that map
variable-dimension input sequences to variable-
dimension output sequences. Many NLP tasks are
related with this mapping. For example, machine
translation, speech recognition and question an-
swering. This model can be frame as an encoder-
decoder model (See Figure 6). The encoder is an
LSTM which read the input sentence and warp it
to a fixed length vector. The decoder LSTM is a
recurrent neural network language model, initial-
ized with the last state of encoder LSTM.

Figure 6: Sequence to sequence model

Sentence autoencoder (Dai and Le, 2015) is an
unsupervised learning method that learn sentence
representation (see Figure 7). The idea is inspired



Figure 7: Sentence autoencoder model

by aforementioned sequence to sequence learning
model. Sentence autoencoder can be regarded as a
variation of sequence to sequence learning. It also
used a LSTM as a recurrent neural network en-
coder to read the input sentence into hidden state.
The decoder LSTM is a language model aims to
reconstruct the input sentence, and the two LSTM
share same weights. For each training step t, a de-
coder LSTM unit generates y(t), which represents
probability distribution of next word given previ-
ous word, hidden state and context vector. Soft-
max ensures the output probability distribution is
valid. The error is calculated by cross-entropy cri-
terion and weight is updated by back propagation.

Sentence autoencoder has similar structure with
the Skip-Thought. The difference is the sentence
autoencoder aims to reconstruct the input sen-
tence, whereas Skip-Thought’s goal is to predict
adjacent sentences. Since sentence autoencoder is
an unsupervised model, thus can be trained with
large amount of unlabeled data to improve it qual-
ity. The weights obtained from sentence autoen-
coder can be used as pretrain model to initialized
other supervised network, thus improve the classi-
fication performance.

4.4 Multi-task Sequence to Sequence

Multi-task learning or lifelong learning framework
has been widely studied by Thrun (1996), and
Caruana (1998), whose goal is to improve general-
ization performance of a task by re-use the knowl-
edge gathered in the other related tasks. Recently
seq2seq approach has achieve state-of-the-art per-
formance in many tasks, such as machine trans-
lation (Luong and Manning, 2015), image cap-
tioning (Vinyals et al., 2015b), and constituency
parsing (Vinyals et al., 2015a). Multi-task seq2seq
learning (Luong et al., 2015) aims to exploited the
power of seq2seq model across many tasks, thus
boost the performance of seq2seq model in a spe-
cific task. With this purpose, Luong et al. pro-
posed three multi-task learning approaches with

seq2seq. (1) the one-to-many approach, which has
a common encoder and different decoders. (2)
the many-to-one approach, which has a decoder
in common, but used multiple encoders (3) many-
to-many approach, which share multiple encoders
and decoders.

One-to-many approach (see Figure 8) involves
one common encoder and multiple decoders for
different tasks. The encoder map an English sen-
tence to a hidden vector, multiple separate de-
coders map the hidden vector to a translation sen-
tence in German, and to a sequence of parsing
tags, and its surrounding sentences (skip-thought)
or itself (seq2seq autoencoder). This approach
only suitable for tasks that need to encode an sen-
tence, image captioning is not a suitable subtask,
because it requires encode a picture. All decoders
are separate RNN language model.

Figure 8: One-to-many multi-task model

Many-to-one approach (see Figure 9) involves
multiple different encoders and shared one de-
coder. This approach is useful when only decoder
can be shared. For example, constituency parsing
task is not a suitable task, because a parsing tag
sequence can not map to an English sentence.

Figure 9: Many-to-one multi-task model

Many-to-many approach (see Figure 10) extend
the aforementioned approaches, it involves mul-
tiple encoders and multiple decoders. The au-
thor design this approach especially for machine
translation, in order to utilize the large monolin-
gual corpora in both the source and the target lan-
guages.

One thing is worth to mention here is the train-
ing strategy. Inspired by Dong et al. (2015),
Multi-task seq2seq learning allocate different
times of parameter updates for each task, the up-



Figure 10: Many-to-many multi-task model

dating frequency is associated with the mixing ra-
tio αi for each task i. Each parameter update con-
sists on one task training data. Task is switch to
another with probability αi∑

j αj
for task i. The con-

vention is that the first task is the reference task
with α1 = 1, and the number of training parameter
updates for the first task is pre-specified to be N.
Therefore, every typical task i will then be trained
for αi

α1
N times parameter updates.

The results show that syntactic parsing and im-
age caption generation improves the translation
quality between English and German. For unsu-
pervised learning objectives, seq2seq autoencoder
help less in terms of perplexities, but more on
BLEU scores compared to Skip-Thought.

4.5 Variational Autoencoder for
Semi-supervised Text Classification

Recently a Semi-supervised Sequential Varia-
tional Autoencoder (SSVAE) is proposed for
semi-supervised sequential text classification task.
The SSVAE adapt the seq2seq model to the
semi-supervised variational inference framework
(Kingma et al., 2014), with a modification of the
decoder, which feed the label y at each time step.

In order to fully understand the SSVAE, we
briefly introduce the semi-supervised variational
inference model. This model consists of two ob-
jective functions for labeled data (X,y) and unla-
beled data (X). For labeled data (X,y), the varia-
tional lower bound with corresponding latent vari-
able z is:

L(X,y;φ, θ) = −DKL[qφ(z|X,y)||p(z)]
+ Eqφ(z|X,y)[log pθ(X|z, y)] + log pθ(y)

≤ log pθ(X,y)

where the first term is the KL divergence between
the prior distribution p(z) and the posterior dis-
tribution qφ(z|X,y), and the second term is the
expectation of the conditional log likelihood on z.

For labeled data (X), the unobserved label y
is treated as a latent variable, predicted by the in-
ferred posterior distribution qφ(y|X) , the varia-

tional lower bound is:

U(X;φ, θ) =
∑
y

qφ(y|X)(−L(X,y;φ, θ))

+ log qφ(y|X)

≤ log pθ(X)

Thus, the objective for the entire dataset is:

J =
∑

(X,y)∈Sl

L(X,y) +
∑
X∈Su

U(X)

+ αE(X,y)∈Sl [− log qφ(y|X)]

where Sl and Su represent labeled and unlabeled
data respectively, α is a weight for classification
loss of labeled data. The semi-supervised vari-
ational inference model consists of three compo-
nents: an encoder network qφ(z|X,y), a decoder
network pθ(X|y, z), and a classifier qφ(y|X).

Figure 11: Semi-supervised Sequential AutoEn-
coder

SSVAE (see Figure 11) incorporates seq2seq
model with semi-supervised variational inference
model. The encoder and the classifier are LSTM
network, which encode the input sequence to hid-
den representation z and hidden label y if y is
unobserved. The decoder is a little bit different
in terms of seq2seq decoder (RMMLM). The de-
coder is a LSTM language model conditioned on
concatenation of z and y, and the true or estimated
label y feeds into every step of the language model
when it estimate the probablity pθ(X|y, z).

The author studied with two methods to incor-
porate y in decoder. The first on concatenates
the word embedding and label vector at each time
step, which has been widely used in Ghosh et al.
(2016) and Sarban et al. (2016). The second
method made a modification of the cell gate in
LSTM, which is inspired by Wen et al. (2015).

The model is applied with IMDB and AG’s
news dataset, and achieves the state-of-the-art per-
formance in the classification task by combining
the pretraining method (Dai and Le, 2015).



5 Conclusion

This paper summarizes several document and sen-
tence level generative models based on variational
inference method and sequence to sequence learn-
ing model. Variational inference method has been
shown its power in image generation and classi-
fication, we expect to see more application with
variational inference in text related tasks. Se-
quence to sequence model efficiently solve the
mapping problem form the variant length input to
variant length output. It achieves state-of-the-art
performances in many language tasks, we also ex-
pect more effective and efficient models inherits
the seq2seq ideas.
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